Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Ann Hematol ; 102(4): 961-966, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2285943

ABSTRACT

Patients with hematological malignancies who experience severe infections are at risk of developing dangerous complications due to excessive inflammatory cytokines. To improve the prognosis, it is crucial to identify better ways to manage the systemic inflammatory storm after infection. In this study, we evaluated four patients with hematological malignancies who developed severe bloodstream infections during the agranulocytosis phase. Despite receiving antibiotics, all four patients presented elevated serum IL-6 levels as well as persistent hypotension or organ injury. Adjuvant therapy with tocilizumab, an IL-6-receptor antibody, was administered, and three of the four patients showed significant improvement. Unfortunately, the fourth patient died due to multiple organ failure caused by antibiotic resistance. Our preliminary experience suggests that tocilizumab, as an adjuvant therapy, may help alleviate systemic inflammation and reduce risk of organ injury in patients with elevated IL-6 levels and severe infection. Further randomized controlled trials are needed to confirm the effectiveness of this IL-6 targeting approach.


Subject(s)
COVID-19 , Hematologic Neoplasms , Humans , Interleukin-6 , SARS-CoV-2 , Cytokine Release Syndrome , Treatment Outcome , Hematologic Neoplasms/complications , Hematologic Neoplasms/drug therapy
2.
Cell Discov ; 8(1): 70, 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1960340

ABSTRACT

Little is known regarding why a subset of COVID-19 patients exhibited prolonged positivity of SARS-CoV-2 infection. Here, we found that patients with long viral RNA course (LC) exhibited prolonged high-level IgG antibodies and higher regulatory T (Treg) cell counts compared to those with short viral RNA course (SC) in terms of viral load. Longitudinal proteomics and metabolomics analyses of the patient sera uncovered that prolonged viral RNA shedding was associated with inhibition of the liver X receptor/retinoid X receptor (LXR/RXR) pathway, substantial suppression of diverse metabolites, activation of the complement system, suppressed cell migration, and enhanced viral replication. Furthermore, a ten-molecule learning model was established which could potentially predict viral RNA shedding period. In summary, this study uncovered enhanced inflammation and suppressed adaptive immunity in COVID-19 patients with prolonged viral RNA shedding, and proposed a multi-omic classifier for viral RNA shedding prediction.

3.
Front Microbiol ; 12: 770657, 2021.
Article in English | MEDLINE | ID: covidwho-1903051

ABSTRACT

The resistance of methicillin-resistant Staphylococcus aureus (MRSA) has augmented due to the abuse of antibiotics, bringing about difficulties in the treatment of infection especially with the formation of biofilm. Thus, it is essential to develop antimicrobials. Here we synthesized a novel small-molecule compound, which we termed SYG-180-2-2 (C21H16N2OSe), that had antibiofilm activity. The aim of this study was to demonstrate the antibiofilm effect of SYG-180-2-2 against clinical MRSA isolates at a subinhibitory concentration (4 µg/ml). In this study, it was showed that significant suppression in biofilm formation occurred with SYG-180-2-2 treatment, the inhibition ranged between 65.0 and 85.2%. Subsequently, confocal laser scanning microscopy and a bacterial biofilm metabolism activity assay further demonstrated that SYG-180-2-2 could suppress biofilm. Additionally, SYG-180-2-2 reduced bacterial adhesion and polysaccharide intercellular adhesin (PIA) production. It was found that the expression of icaA and other biofilm-related genes were downregulated as evaluated by RT-qPCR. At the same time, icaR and codY were upregulated when biofilms were treated with SYG-180-2-2. Based on the above results, we speculate that SYG-180-2-2 inhibits the formation of biofilm by affecting cell adhesion and the expression of genes related to PIA production. Above all, SYG-180-2-2 had no toxic effects on human normal alveolar epithelial cells BEAS-2B. Collectively, the small-molecule compound SYG-180-2-2 is a safe and effective antibacterial agent for inhibiting MRSA biofilm.

SELECTION OF CITATIONS
SEARCH DETAIL